搅拌器工作时,用搅拌器对低黏度互溶液造成湍流并不困难,但黏度达到较高水平后,由于黏滞力的影响,就只能出现层流状态。尤其困难的是,这种层流也只能出现在搅拌器的附近,离桨叶稍远些地方的高黏度液体仍是静止的。这样就很难造成液体在搅拌器内的循环流动,即在器内会有死区存在,对混合、分散、传热、反应等各种搅拌过程十分不利。所以,高黏度液体搅拌的首要问题就是要解决流体流动与循环的问题。在这种情况下,不能靠增大搅拌器的转速来提高搅拌器的循环流量,因为流体黏度较高时,搅拌器排出的流量很少,转速过高还会在高黏度溶液中形成沟流,而周围液体仍为死区。较为有效的解决办法是设法使搅拌器推动更大范围的流体。因此,高黏度液体的搅拌器直径与器内径之比、桨叶的宽度与器内径之比都要求比较大,有时还要求增加搅拌器的层数,以增大搅拌范围。
罐中液体的循环流动是达到物料混合所的流动状态,而湍流扩散、剪切流又是某些搅拌过程快速进行达到搅拌目的所需要的。虽然某种合适的流动状态也要靠搅拌罐及其他附件来共同造成,但是叶轮的形状与运转情况仍可以说是决定罐内流动状态的基本的因素。
各种搅拌叶轮形状按搅拌器的运动方向与叶轮表面的角度可分为三类,即平叶、折叶和螺旋面叶。桨式、涡轮式、锚式、框式等的叶轮都是平叶或折叶,而推进式、螺杆式、螺带式的叶轮则为螺旋面叶。 平叶的桨面与运动方向垂直,即运动方向与桨面法线方向一致。折叶的桨面与运动方向成一个倾斜角度;一般这个倾斜角度为45或60度等。螺旋面叶是连续的螺旋面成其中一部分,叶片曲面与运动方向的角度逐渐变化,如推进式叶片的根部曲面与运动方向一般可为40-70度,而其叶端的曲面与运动方向的角度较小,一般为17度左右。 由于平叶的运动方向与桨面垂直,所以当叶轮低速运转时,液体的主要流动为水平环向的流动。
从搅拌器理来看,在层流区混合高黏度液体时,液体单元经受剪切细分作用被拉长、拉细或分割,随着剪切时间的增加,逐渐达到混合。同时,由于搅拌器内剪切场不是均匀的,例如锚式搅拌器在锚与釜壁间的间隙区是强剪切区,液体的混合速率较快,而釜中部区域则是低剪切区,混合速率较慢,因此,高剪切区与低剪切区间的液体交换速率或液体在釜内的循环能力也是影响混合的重要因素。此外,搅拌器内流体的速度波动也能促进混合。换言之,高黏度液体的混合速率主要取决于搅拌器与釜壁表面间的相对运动速率及相互之间的距离,为此也要求用于高黏流体的搅拌器,搅拌器直径与器内径的比值都相当大。实际生产过程中,常用的黏性流体搅拌器有锚式搅拌器、螺带式搅拌器、框式搅拌器等。
功率的搅拌过程以外,装液高径比则可考虑适当选得大一些,以避免随搅拌容器筒体直径的放大,搅拌器功率无谓地损耗。
(2)装液高径比对传热的影响,装液高径比对夹套传热有显著影响。当搅拌容器容积一定时,装液高径比愈大,则筒体盛料部分表面积越大,夹套的传热面积也就越大;同时随装液高径比增大,传热表面距筒体中心越近,则物料的温度剃度就愈小,愈有利于提高搅拌器传热效果。因此从传热角度考虑,一般希望装液高径比取得大一些。
以上信息由专业从事溶液搅拌器的中拓鼎承于2025/8/17 19:38:22发布
转载请注明来源:http://chuangsha.mf1288.com/sdztdc202302-2881953563.html